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Abstract. It  is shown that a parallel-plate capacitor with a sinusoidal defect in one of its 
electrodes has the same capacitance as a plane electrode capacitor with slightly smaller 
inter-electrode spacing, and the same force per unit area as a plane electrode capacitor 
with still smaller spacing. General expressions are given for the apparent reduction in 
spacing for both cases as a function of the wavelength and amplitude of the defect. 
Extensions of the theory til a general periodic defect, and to a capacitor with defects in 
both electrodes, are discussed. 

1. Introduction 

The parallel-plate capacitor is a paradigm of classical electrostatics, and the determina- 
tion of its electric field strength, capacitance per unit area and other properties are 
trivial textbook exercises. Recently we have re-examined the departures from the 
simple theory which occur when the plates are of finite extent (Sloggett et a1 1986). 
Here we consider theoretically another type of deviation from the ideal case, that due 
to surface imperfections in one or both plates. This investigation, like the earlier one, 
is motivated by the experimental development of a parallel-plate liquid electrometer 
for the absolute measurement of voltage (Clothier 1965, Sloggett et al 1985). In this 
instrument, precise measurements of the separation of the electrodes, one of which is 
a liquid mercury surface, are used to determine the electrostatic force existing between 
them. The electrode separation is variable in the range 2-5 mm, and is measured with 
a precision of about 0.1 nm. It is known that the mercury surface has waves of the 
order of 10 nm RMS amplitude, while the second electrode has polishing defects whose 
R M S  amplitude may amount to a few nm. The question to be investigated is: to what 
extent do the surface irregularities modify the effective electrostatic spacing of the 
electrodes ? 

To simplify the problem we consider the electrode system shown in figure 1, in 
which one electrode is a conducting plane and the other has sinusoidal undulations 
of peak-to-peak amplitude 2a and wavelength L. Both electrodes are of infinite extent 
and their mean spacing is d = 2y,. Clearly the electric field distribution will be neither 
vertical nor uniform close to the upper electrode. If the undulations are very deep 
( a  >> L), only a weak field will penetrate to the upper extrema of the sinusoidal electrode, 
while at its lower extrema the field strength will be enhanced. These field distortions 
accentuate the importance of the lower extrema in determining the effective electrostatic 
separation of the electrodes. Thus one might imagine that a plane electrode which is 
electrostatically equivalent to the sinusoidal electrode will lie not at its geometrical 
mean position y = yo,  but at a position intermediate between y = yo and y = yo - a. 
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Figure 1. Electrode geometry. 

A related problem, in which the periodic defect in the upper electrode has a different, 
non-sinusoidal form, has been studied by Maxwell (1904). For the electrode geometry 
studied he gives an expression for the inter-electrode spacing of an ideal parallel-plate 
capacitor whose capacitance is equal to that of the capacitor with defect. Below we 
give a similar result for the case of a sinusoidal defect, and in addition give an expression 
for the spacing of an ideal parallel-plate capacitor having the same inter-electrode 
force as the capacitor with sinusoidal defect. We first show that these are distinct 
criteria. 

2. Equivalent plane electrodes 

One sense in which a plane electrode could be said to be equivalent to the sinusoidal 
electrode of figure 1 would be that, when carrying the same potential V as the sinusoidal 
electrode, it produces the same mean electric field strength at the lower electrode. The 
inter-electrode field distribution &(x, y )  for figure 1 will be periodic in x with period 
L. Hence the mean field strength at y = -yo is 

Let the plane of the flat electrode producing a uniform field of intensity E be y = y ,  
and its distance from the lower electrode be d,. Then 

defines the position of this electrode. 
Since the charge per unit area on the lower electrode is proportional to the field 

strength ( 8 4 / 8 ~ ) - ~ " ,  the plane electrode pair y = y ,  and y = -yo will have the same 
mean capacitance per unit area as the system of figure 1. We may then refer to the 
electrode whose position is defined by equation ( 2 )  as the equal capacitance plane 
electrode, and to d, as the electrode separation for equal capacitance. For a given 
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value of the potential difference V, the equal capacitance plane electrode system will 
have the same stored energy (per unit area) as the sinusoidal electrode system. 

A different criterion of equivalence is obtained if we consider the force of attraction 
between the electrodes. For the system of figure 1, with the voltage V held fixed, the 
mean force per unit area is 

where C is the mean capacitance per unit area at the geometrical spacing d, given by 

c = - & E /  V. (4) 

Hence 

( 5 )  
& V a E ( d )  
2 ad 

F=-- 

where E ( d )  is given by (1) with y o = $ d .  For an ideal parallel-plate capacitor of 
separation d F ,  the force per unit area is 

& V2 F = -  
2d:’  

Equating ( 5 )  and (6) we obtain 

V a,??(d) _-  
d:- ad 

or, from ( l ) ,  

Equation ( 7 )  gives the plate separation of a parallel-plate capacitor whose mean 
force per unit area is the same as that of figure 1 for the same applied voltage V. We 
may refer to d F  as the electrode separation for equal force. The plane of this electrode, 
which we may refer to as the equal force plane electrode, is y = y,, where 

yF = dF-yO. (8) 

We thus have two distinct criteria for the equivalence of a parallel-plate electrode 
system and the sinusoidal plate system of figure 1: equal capacitance and equal force. 
In the following analysis both criteria are considered. 

3. Analysis 

We assume that the amplitude, a, is small compared to the spacing, d, and rewrite the 
profile of the upper electrode as 

y = y o ( l + &  cos kx) (9) 

where E = a / y o  and k = 2771 L. We wish to solve Laplace’s equation, 
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subject to the boundary conditions 

We assume a regular perturbation solution in powers of E ,  namely 

and treat the boundary condition (1 1 b )  by making a Taylor series expansion about 
y = y o ,  This gives 

v = 4o(x, Yo)  + [ 41 (x, Yo)  + (5) .0)10 cos kx] 

It is therefore necessary to solve Laplace’s equation for do, d1, d2, . . . , using the 
boundary conditions 

~ $ ~ ( x ,  -yo) = 0 for all i (14) 

and, from ( 1 3 ) ,  

4o(x, Y o )  = v 

d,(x, Y o )  = -( 5) yo cos kx 
YO 

and so on. 
To second order in E ,  we find that 

cos kx) 
V ( Vsinh k ( y + y o )  

4 (x, Y ,  E ) = - (Y + Yo)  + E - - 
2Yo 2 sinh2kyo 

( 1 8 )  
Y+Yo+sinh W Y  + Y O )  cos 2kx + a ~ * V k y ~  coth 2ky0 - ( 2y0 sinh4kyo 

Neglecting terms in powers of E greater than E’,  equation ( 1 8 )  gives 

V EVk cos kx ($) -Yo = - 2 sinh 2 kyo 

Substituting in ( 2 )  and integrating, 

+dE2Vk coth 2ky0 

V &*yak coth 2ky0 
dc 2Yo 4 

Since the second term in ( 2 0 )  is much less than unity, we have 

( m2 coth 2 r d /  L> 
d , = d  1 -  

d L  
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and so the equal capacitance plane electrode is displaced towards the lower electrode 
by the amount 

( 2 2 )  
rra2 2 r d  

L L Ad, = d - d ,  = - coth -. 

To examine the equivalent force electrode, substitute (19) into ( 7 )  to obtain 

coth 
r a  ' r 2 a 2  ( L2 sinh' 2 r d /  L Ld 

-- 
L 

z d  1-  

The displacement Ad,  of the equal force plane electrode towards the lower electrode 
is thus 

r ' a 2 d  ra' 2 r d  +- coth - 
L 

A d F = d - d  - 
F -  L2 sinh' 2 r d l  L L 

4. Discussion 

Comparing ( 2 2 )  and ( 2 4 ) ,  it is evident that AdF is always greater than Ad,.  It is of 
interest to consider the behaviour of Ad, and Ad,  for two limiting cases, namely 
2 r d / L > >  1 (wavelength much less than the electrode separation) and 2 r d / L < <  1 
(wavelength much greater than the electrode separation). For 2 r d /  L >> 1, the first term 
in the RHS of (24 )  is negligible and Adc and AdF converge on a value which is 
independent of the plate separation: 

AdF = Ad, = =a2/ L. 

For 2 r d / L < <  1, AdF and Ad, take different values, both of which are independent of 
the wavelength: 

Ad, = a 2 / 2 d  (26 )  

AdF 3 a 2 / 4 d .  (27 )  

Figure 2 shows representative curves computed from (22 )  and (24 )  for a range of 
wavelengths L and several amplitudes a. Curves are given for two spacings at the 
extremes of the range of interest in the liquid electrometer, d = 2.0 mm and d = 4.6 mm. 
The curves confirm the limiting behaviour discussed above. 

Equations (22 ) - (27 )  are quadratic in a, indicating that the displacements Ad, and 
AdF rapidly become negligible for small a. Both figure 2 and equation ( 2 5 )  indicate 
an inverse dependence on the wavelength L. Clearly Ad, and Ad,  cannot increase 
beyond a, even for very large values of a or small values of L. There is a limit of 
validity for the analysis given here, arising from the neglect of higher-order terms in 
(18). We have found that the coefficient of includes a term in k 2 y ;  which, to be 
negligible, requires L >> 2 r a ,  i.e. that the undulations be of small slope. This require- 
ment, which supplements the other formal requirement of our derivation, E = 2 a l d  << 1, 
excludes the region in which anomalously large displacements are 
predicted by ( 2 5 ) .  
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Figure 2. Displacements of equivalent plane electrodes as a function of the wavelength 
and amplitude of a sinusoidal electrode defect, for two electrode separations d. Full curve, 
AdF; broken curve, Ad,. A, a = 100 nm; B, a = 10 nm; C, a = 1 nm. 

A result of Maxwell (1904) is applicable to the case of deep undulations. He shows 
that, for a defect having a particular non-sinusoidal periodic form, in our notation, 

where 2a is the peak-to-peak amplitude of the periodic functions considered. For very 
deep undulations, little electric field penetrates into the undulations and the electrostatic 
properties of the electrode are essentially determined by the form of the lower extrema 
of the undulations. In the limit a / L +  00 the form of the lower extrema of the upper 
electrode in both the sinusoidal case and the case treated by Maxwell approaches that 
of the set of semi-infinite planes x = ( m  + $ ) L ,  y > y o -  a, where m = 0, *l, *2, , . . , etc. 
In this limit equation (28) gives a result which is therefore also applicable to the 
sinusoidal case: 

L In 2 
Adc+ a --. 

7T 

Thus, for deep undulations, Adc approaches a limit which is of the order of, but less 
than, a. Similar, if not identical, limiting behaviour is expected for A d F .  

For the liquid electrometer it is relevant to know the extent to which the displacement 
of the equivalent plane electrodes varies with d. This may be examined by subtracting 
the displacements for the two values of d used in figure 2; the results are plotted in 
figure 3. It is interesting to note that the changes in Adc and AdF with d are largest 
for large wavelengths L, i.e. the range of L for which the displacements themselves 
are smallest. The rate of decrease of the change in displacement as the wavelength 
decreases is extremely fast. Thus, although figure 2 indicates that, for a = 10 nm, 
displacements can be expected to exceed 0.1 nm for L < 0.3 p m ,  they will be essentially 
independent of d and can be eliminated by differential measurements of the type 
employed in the liquid electrometer (Sloggett er a1 1985). 
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Figure 3. Change in displacements between the two electrode separations of figure 2. Full 
curve, change in AdF; broken curve, change in I d , .  

The foregoing results may be extended to the case of an upper electrode which is 
an arbitrary periodic function of x with period L, namely 

X 

y = yo+ C a, C O S ( ~ I T ~ X / L +  e,,). 
n = l  

By re-expressing this equation in the perturbation form 
X 

y = yo( 1 + E a ,  cos(2mx/  L + 0, ) 
n = l  

and proceeding as for (9 ) ,  it is found that the displacement of the equal capacitance 
plane electrode is 

* ma’ ,  2rrnd 
coth - 

L .  
Ad,= C - 

n = l  L 

The nth term of the above sum is just the displacement Ad,(n) due to the nth harmonic 
component of the surface roughness. Equation (32) therefore shows that the capacit- 
ance displacement due to a roughness profile composed of any number of harmonically 
related sinusoids is the linear sum of the displacements due to the individual sinusoids. 

So far we have examined only the case of a single rough electrode opposed by a 
plane electrode. We conclude by considering briefly what might happen when both 
electrodes are rough. When the wavelength of the undulations is small compared with 
the electrode separation, the region of field non-uniformity is confined to the vicinity 
of the rough surface and does not extend to the opposite electrode. This is the case 
treated by equation (25) and accounts for its independence of the plate separation d. 
The displacements AdF and Ad, may then be thought of as intrinsic properties of a 
rough electrode, independent of the position or properties of the second electrode. 
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The same will be true for displacements due to small-period undulations in the second 
electrode. The displacements will then be additive, so that the effective separation of 
a pair of rough electrodes of small wavelength will be 

(33) 

where Ad, and Adz are the displacements (in either the equal capacitance or equal 
force sense) due to surface roughness of the individual electrodes. 

I f  L is comparable with, or greater than, d, the displacements associated with each 
electrode are influenced by the position, and possibly also the surface profile, of the 
other electrode. This is indicated by the dependence on d of ( 2 6 )  and (27). In this 
case it can no longer be assumed that displacements due to the individual surfaces 
are additive. 

de((=  d - Ad, - Ad1 
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